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Multi-axis robotic Force/Moment (F/M) sensors are capable of simultaneously detecting multiple components of
force (Fx, Fy, and Fz), as well as the moments (Mx, My and Mz). This enables them to be frequently used in many
robotic applications. Accurate, time-effective calibration and decoupling procedures are critical to the implemen-
tation of these sensors. This paper compares the effectiveness of decoupling methods based on Least-Squares (LS),
BP Neural Network (BPNN), and Extreme Learning Machine (ELM) methods for improving the performance of
multi-axis robotic F/M sensors. In order to demonstrate the effectiveness of the decoupling methods, a calibration
and decoupling experiment was performed on a five-axis robotic F/M sensor. The experiments demonstrate that
the ELM based decoupling method is superior to LS and BPNN based methods. The presented theoretical and
experimental demonstrations provide a comprehensive description of the calibration and decoupling procedures
of multi-axis robotic F/M sensors. This work reveals that the ELM method is an appropriate and high performing
decoupling procedure for multi-axis robotic F/M sensors.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-axis robotic Force/Moment (F/M) sensing is an important
branch of robotic sensing intended to measure the external forces and
moments on robotic manipulators. Multi-axis sensing has been widely
considered in both industry and academic research and also plays an
increasing role in the fields of robotics, haptics, virtual reality, etc. in
order to acquire relevant information from physical interactions [1,2].
Recently, researchers have investigated and developed many F/M sens-
ing systems with adequate performance via both direct and indirect ap-
proaches [3,4]. A six-axis F/M sensor can measure the tangential force
terms along x-, y-, and normal force term along z-axis (Fx, Fy, and Fz) as
well as the moment terms about x-, y-, and z-axis (Mx, My, and Mz) si-
multaneously [5]. Multi-axis F/M sensors refer to sensors that can detect
less than the six terms, to which the most commonly used F/M sensors
are three-, or six-axis [6-8].

The trend towards flexibility in manipulation and effective con-
trol progressively requires high performance multi-axis F/M sensors in
robotics and automation. For this purpose, continuous improvement ap-
proaches have been attempted. In this process, much of the research has
revealed interesting scientific questions and technological challenges in
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developing high-precision and robust F/M sensing systems. Several re-
searchers have designed a wide variety of multi-axis F/M sensors with
novel structures in order to improve the sensing accuracy. For example,
Meng et al. presented a novel six-axis accelerometer based on a structure
of dual annular membranes [9].

Precise calibration and decoupling of multi-axis F/M sensor is crit-
ical and can be challenging. More specifically, the calibration process
of multi-axis F/M sensors refers to the relationship between the sen-
sors output voltages and the applied load. This relationship should be
accurate and reliable according to the applied standard and maintain
a certain accuracy of measurement. Also, the majority of the existing
multi-axis F/M sensors have inherent highly coupled interference errors
among their components (especially between component F, and com-
ponent M, component F, and component M, respectively), which are
influenced by the sensing principle, manufacturing process, EE struc-
ture and detection mode [7,10,11]. The coupling effect produces a sig-
nificant decrease in accuracy of the sensor and requires complicated
decoupling algorithms for compensation [12,13]. Therefore, particular
emphasis has been given to the decoupling algorithms of multi-axis F/M
sensors [15].

Wu and Cai [16] constructed a unique six-axis F/M sensor to measure
the interactive force between surgical tools and soft tissue. This can ide-
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Fig. 1. Schematic illustration of a multi-axis F/M sensor.

ally be used for haptic information acquisition in virtual surgery. The
authors proposed a novel Elastic Element (EE) based on a decoupling
mechanism with that has a sliding structure. The calculated expanded
uncertainty and coupling error of the sensor are 0.1% F.S. and 0.89%
F.S, respectively. Yuan et al. [8] constructed a six-axis F/M sensor based
on a typical EE with double cross-beam structures for humanoid robot
foot. This sensor is capable of over 1000 N of total vertical load, and after
linear static decoupling, its repeatability error and interference error are
less than 1.88% F.S. and 3.0% F.S., respectively. Dasgupta et al. [17] dis-
closed a design methodology for the Stewart platform sensor structure
based on the optimal conditioning of the force transformation matrix.
Unlike the traditional EEs that measure all the F/T components with a
single monolithic structure, this kind of sensor employs limbs of the par-
allel mechanism to detect the F/M components. This uniquely makes it
possible to provide de-coupling F/M information with high stiffness and
high sensitivity. Recently, a nonlinear static decoupling algorithm based
on a coupling error model and six separate Support Vector Regressions
(SVRs) for 3-axis force sensors was proposed. In this study, the maxi-
mum interference error was claimed to be within 1.6% F.S. [18].

In this paper, we study the theoretical and experimental demonstra-
tions of several proposed decoupling methods such as LS, BPNN, and
ELM. Calibration and decoupling experiments with the proposed meth-
ods are carried out on a five-axis F/T sensor, and the results are com-
pared and discussed.

2. Multi-axis F/M sensor system and its fundamental principle

Configurations adopted in multi-axis F/M sensors originate from var-
ious measurement principles such as resistive, capacitive, inductive,
piezoelectric, magnetic and optical methods [19]. The most commonly
used approaches out of these principles relies on resistive or piezoresis-
tive measuring. The most well-known resistive transducers utilized on
multi-axis F/M sensors are strain gauges. The measurement chain of the
multi-axis F/M sensor system that uses the resistive method consists of
several blocks, which can be observed in Fig. 1.

When bonded onto the EE of the sensor, the strain gauges will un-
dergo changes of resistance that correspond to the deformation of the
EE. This relationship is given by

AR, = Gg,R, M

where R; is the original resistance of the ith strain gauge, G and ¢, are the
gauge factor and the strain, respectively. Provided that the EE behaves
within the elastic range of the material, the occurred strain, ¢; and the
applied load, L, are related by the following equation:

g = f(L) (@)

Full-bridge measure circuits are always used to detect the small re-
sistive changes with high sensitivity and inherent linearity. The output
voltage of the jth bridge can be expressed as

1
AUj=ZUeG(£j1—5j2+£j3—£j4) 3)
where U, denotes the voltage excitation source, and &j represent the
strain in the kth gauge of the jth full-bridge circuit.
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Fig. 2. Coupling model of multi-component F/M sensor.

Regarding multiple axis F/M sensors, several components will simul-
taneously generate output signals when a single F/M component is ap-
plied onto the sensor. This is mainly caused by the monolithic structure
of the EE and the inherent manufacturing error. The coupling model of
the multi-component F/M sensor is illustrated in Fig. 2.

Therefore, the output of the sensor composed of n full-bridge circuits
AU € R" can be expressed as

AU=wF+b “)

where w e R"*™ and b € R" represent the coupling coefficient and bias
matrices, respectively, and F € R™ represents the applied load vector
that contains three force components and three moment components
applied to the center of the sensor. The output can also be expressed as

AU =TF )

where TeR"™™M is the transformation matrix, which depend on the
structure and geometrical dimensions of the EE, the particular locations,
and the configuration of the strain gauges bonded on the EE.

Signal conditioning of the F/M sensor includes amplification, isola-
tion, thermal compensation, filtering, and range matching to qualify and
enhance the sensor output AU to be suitable for processing.

The main challenge in processing the signals from the F/M measure-
ment is related to the methods used to extract useful information from
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Fig. 3. Calibration setup and decoupling procedure of the multi-axis F/M sensor.

(2)

Fig. 4. Five-axis robotic F/M sensor: (a) Sketch of the sensor structure; (b) five-axis F/M
sensor prototype.

(b)

the obtained sensor output signal. It is typically in the microvolt range
which can provide a challenge. A microprocessor or a host computer is
utilized to acquire and process the F/M information, as well as to present
the measurement data in a manner that is useful for human interpreta-
tion. One of the most important tasks in processing the signals from the
sensor is related to the determination of the relationship between the
raw output signals and the actual applied load vector. This is also re-
ferred to as Calibration and Decoupling. The successful implementation
of multi-axis F/M sensors in robotic systems depends primarily on the
level of understanding associated with their calibration and decoupling
methods.

3. Calibration and decoupling methods

Precise calibration and decoupling of multi-axis F/M sensor systems
is critical and can be challenging. The most commonly utilized calibra-
tion procedure for the multi-axis F/M sensor begins by applying known
reference forces or moment components individually to the sensor from
the minimum to maximum measurement range with a constant incre-
ment. Meanwhile, the sensor output (volts) is monitored and recorded
at each set point accordingly. After repeating the mentioned procedure
five times in a cyclical pattern, the recorded data can be utilized to cal-
ibrate and decouple the sensor via the chosen method. The calibration
setup and decoupling procedure of the sensor, as shown in Fig. 3, was
performed as follows:

1. Firmly fix the sensor to the calibration platform with a loading cap
bolted on its top.

. Adjust the zero point of the output voltages of each component of
the sensor.

. Apply different weights on each component of the sensor within its
measurement range, first gradually increasing to the positive full
scale, and then decreasing to zero. Meanwhile, the output voltages
of each component are recorded as samples.

. The loading cycle is performed five times for each component.

A five-axis F/M sensor with a coupling error of 3% F.S. and a maxi-
mum relative error of 5% F.S. has been developed by our research team
(as shown in the Fig. 4) [20].

The five-axis robotic F/M sensor used in this calibration experiment
can measure the three contact forces along all three Cartesian coordi-
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nates (Fx, Fy, and Fz) and the according moments about two tangential
axes (Mx and My). It behaves with good performance when measuring
a single force or moment component. However, when the measurement
is not limited to one force or moment there exists high coupling error
among the F/M components. This is observed in Fig. 5. The coupling
error makes it difficult to perform highly accurate multi-axis F/M mea-
surements.

The following sections will focus on understanding various linear
and nonlinear decoupling methods, as well as the corresponding experi-
ments that were used to determine the optimal method. This knowledge
strives to improve the performance of the multi-axis F/M sensor system.

3.1. Linear static calibration and decoupling method

Multi-axis F/M sensors convert the applied load F to an output vector
A\U. If the sensor is linear, the applied load can then be derived as
follows:

F=TAU+J-TT)z (6)

where T# € R"*" is the generalized inversion of transformation matrix
T and z is an arbitrary nx 1 vector. Usually the component number of
the multi-axis F/M sensor, m, is less than or equal to 6 (such as 3-axis,
4-axis, and 6-axis F/M sensor), while the full-bridge circuits number, n,
should be greater than or equal to m.

The Least-Squares (LS) technique, the most common method used
for linear static decoupling of multi-axis F/M sensors, has been widely
used for identification and calibration. This is done using a wide set of
known F/M vectors (i.e., F; carefully selected to adequately span the
sensor measurement range) and the corresponding output vectors AU;.

Assuming the calibration data (F;, AU;) is available, and the output
signals retrieved from the sensor can be expressed as follows:

P

T
AU1T F| 1
T
AUT| |Fy  T|[wT ;
N [T @
AUT FT 1
P

Therefore, the coupling coefficient and bias matrices can be obtained
as

FIoo1 AuT
wil _|[F F, F, o1 F, F, - F, AUT
b" 1 1 o : 1 1 1 :

T T

Fp 1 AUp

®)
where p represents the total number of calibration data.
) p \lep
r1 |ZFF XF| [XFAUT
Wl _|i=t i=1 i=1 9
bT - )4 T )4 T ( )
2 F p > AU;
i=1 i=1
the coupling coefficient and bias matrices can be written as
P P
wh =AZF,.AUiT —ABZAUiT 10)
i=1 i=1
p p
p" = -BTA Z F,AUT + (BTAB + 1/p) z AuT an
i=1 i=1
with
p p -1
- T T
A_<ZF,-FI. -1/pY, ZF,FI.> (12)
i=1 i=1 j=1
p

B=1/p)F, 13)

i=1



Q. Liang et al.

3 T .
—¥— Fx Mx

S 2 Fy My 1
- —v—Fz
s qf J
£
S0 sgE < g R g s
= 0f R ———ar- W _7_77_“7* 3
=3 ol
=
O ~it

72 L L 1 L 1 L 1

=20 =15 =10 = 0 5 10 15 20

Applied force Fx (N)
(@

S :
? 0';47- '_7:\;7_77_7_73;- e —f
=
&
3
S 21 |

_4 L L 1 1 L L 1

-400 -300 -200 -—100 0 100 200 300 400

Applied torque Mx (Nemm)

(c)

Robotics and Computer-Integrated Manufacturing 49 (2018) 301-308

4
2 4
s 3 e
= -
3 e
° e
5 1 i 1
2 o
5 s
o] OT;-"‘:/* — e TR E S SIS ORD.
1 . . . . . . .
0 5 10 15 20 25 30 35 40
Applied force Fz (N)
4 T T T T T T T 2
e
e 2 ‘ 1
S
] :
§ o = N g
‘5 P
& P
3 2r T .
_4\?"7' : : : , . : :
—400 =300 -200 —100 0 100 200 300 400

Applied torque My (Nemm)
d
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Fig. 6. Architecture of the BP NN for predicting multi-axis F/M.

The precision of the results obtained with this method depends on
the accuracy and distribution of the obtained calibration data. It also
illustrates that there needs to be a large amount of calibration data (with
precise application of many known load vectors) in order to be useful for
estimating coupling error. It can be challenging to achieve an optimal
trade-off between the coupling error elimination and the execution time
of data collection.

3.2. Decoupling method based on BP Neural Network (NN)

The F/M sensor output is susceptible to nonlinearity inherited from
the EE device, interference as well as hysteretic behavior. As a conse-
quence, a linear static calibration and decoupling method can be time-
consuming and sometimes not possible.

Artificial Neural Networks, designed as a computational model, have
been applied successfully in a wide range of applications due to their
ability to accurately model systems in demanding real-time operation
[21]. A BP NN with a single hidden layer of 13 fully connected units is
used to predict the multi-axis F/M as illustrated in the Fig. 6.

The sigmoid function of the hidden nodes is represented by:
f(net) = 2

1+

e—2-net

(14)
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The linear activation function g is selected for the output nodes. The
NN function with p hidden nodes can be expressed as

L =gtf(rAU +vV)+m) (15)

where L= [Fx, Fy, Fz, Mx, My, Mz]7, r and t represent weight matrices
of the hidden layer and the output layer, respectively, v and m are bias
matrices of the hidden layer and the output layer, respectively. The uni-
versal approximation capability of BP NN with sufficient hidden nodes
enables its ability to approximate a nonlinear function. After the NN is
sufficiently trained with the calibration data, it can be utilized to detect
the applied F/M. The number of hidden layer nodes has a large impact
on the prediction precision because too few or too many nodes will cause
large prediction error that can be associated with the over-fit phenom-
ena. The number of hidden layer nodes is initially set between 6 and 15
in this study. As shown in Fig. 7, the mean square error of the output
dramatically decreases with an increase in the number of hidden layer
nodes until it reaches 13, at which point the computation time arrives
at its minimum.

3.3. Decoupling method based on Extreme Learning Machine algorithm
(ELM)

ELM was proposed by Huang et al. [22] as a learning algorithm for
a single hidden layer feed-forward neural network, as shown in Fig. 8.
Unlike the traditional BP algorithm, the ELM randomly chooses the con-
nection weights between the input layer and hidden layer, as well as the
bias of hidden layer neurons. It has been widely implemented in pattern
recognition, computer vision, data mining, signal processing, and con-
trol systems due to its extremely fast learning speed and outstanding
overall performance.

Generally, the decoupling method of multi-axis F/M sensors can be
deduced in the following manner. Suppose that there are N calibra-
tion samples {u;, f;}, where u; = [u;;, U, W3, Uiy, Us, Uig]" is @ multi-
dimensional input (reaches the maximum at 6 when the F/M sensor has
6 axes) for every sample i and f; = [f.1, fiz, fiz, fir fis» fis]T is @ multi-
dimensional output for every sample i. The input and output represent
the F/M sensor full-bridge output voltages and applied load vector re-
spectively. The number of the hidden layer neurons, L, is derived from
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Fig. 7. Mean square error (a) and computation time (b) of the neural network training versus number of the neurons of hidden layer.
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Fig. 8. The network structure diagram of ELM decoupling.

experiments. The output of a network with L hidden nodes and an acti-
vation function g(x) can be described as

o ;
Y Bjigw; - u; + b))
t !
il
L
1 Bpgw; -u; +b)) .
=" = El ST = N By cu b i=1,.,N
: =
fiofor | L
Z Biegw; - u; +b;)
/=1 dox1

(16)

where w; = [w,;,w,;, ..., wg;1T, b; and B; = [5;1. ) ... Bj¢]T represent
the input weights, bias and output weights of the jth hidden layer neu-
rons, respectively. The ELM reliably approximates N samples with min-
imum error following the relationship

L

Bigw; -u;+b)=f;,i=1,...N a7
j=1

The formula (17) can be rewritten as the following matrix form
Hp=F (18)

where the matrix H is referred to be the hidden layer output matrix of
the network

Hw,, w,,...wy, by, by, ...bp uj, uy, ... up)

8wy - ug + by)
g(wy -uy +by)

S(wy - uy + by)
S(wy - uy + by)

&wy -uy+bp)
g(wy -uy +by)

g(wy-uy +b)) &w,-uy+b) g(wy -uy +bp)

NXL
19
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by T
T T

p=|"| F=|: 20)
ﬂz Lx6 f; N X6

Therefore, the output weights f; ¢ can be found analytically by
minimizing the error function ¢ with randomly allocated input weights
Wiy =w,w, - w, " and hidden bias values by, = [by, by, -, by ]"
for a given number of hidden neurons.

N
¢=2 Nt -1l
i=0

Moreover, the output weights of hidden layer neurons (f; ) can be
acquired by solving the least-square norm solution,

@n

B~ || = mintiHp - Fi @)
Finally, the least-square norm solution of the output weights reduces
to

p=H'F 23)

where Htrepresents Moore-Penrose generalized inverse matrix of the
matrix H.

According to the above analysis, the training procedure of the ELM
decoupling method can be concluded as follows:

(1) Randomly allocate the input weights (w; ) and bias (b 1) for the
hidden layer neurons.

(2) Calculate the hidden layer output matrix H.

(3) Calculate the output weights of the hidden layer neurons with § =
H*F.

According to the theorem justified in Huang [22], if the number of
hidden neurons are equal to the training sample number, the above net-
work would approximate the training sample with zero error for any
randomly chosen w;,¢ and b;, . However, when the sample number,
N, is very large, the number of hidden layer neurons, L, is typically
small in comparison to N in order to reduce calculation effort. Initially,
we chose to use 20-50 hidden neurons, and determined through exper-
iments that the MSE of the predicted value and the computation time
reach their optimal values when the number reaches 35, as shown in
Fig. 9.

4. Results

For the experimental comparison of the proposed decoupling meth-
ods, a calibration and decoupling procedure of a robotic five-axis F/M
sensor was performed. The data recorded in the calibration and decou-
pling experiment is normalized and then used as training data to test
inputs and outputs. We selected 80% of the total set for training the BP
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NN and ELM, and utilized the remaining 20% of the set to test the de-
coupling methods. As illustrated in Fig. 10, the ELM and BPNN based
decoupling methods are consistently superior to the LS based method,
and the BPNN method is very comparable with, but not as accurate, to
the ELM method.

The mean error rates of the three decoupling methods are summa-
rized in Table 1. The maximum mean error rates of the LS, BPNN, and
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ELM are 9.39%, 0.16%, and 0.18%, respectively. Although the maxi-
mum mean error rate of the ELM is larger than that of BPNN method,
the accuracy of the sensor with the ELM decoupling method is consis-
tently better than the BPNN method. In general, the results show that
there is a significant improvement in the accuracy of the multi-axis F/M
sensor with the BPNN and ELM decoupling methods.
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Table 1
Results of the decoupling methods.

Mean error rates of the LS method results (%)

Fx Fy Fz Mx My
Component of the multi-axis F/M sensor ~ Fx 0.406277  0.887277 1.208629  0.15437 0.1797419
Fy 1.210813 1.518854 1.069594 0.164438 0.53743255
Fz 1.916879  5.256272  9.393737  0.893552  2.72386586
Mx  0.333648  0.844161 1.852485  0.188827  0.20264124
My  1.319024  0.323774  1.597878  0.099907  0.70437202

Mean error rates of the BPNN method results (%)

Fx Fy Fz Mx My
Component of the multi-axis F/M sensor Fx 0.147007 0.163862 0.036315 0.069732 0.1041335
Fy 0.113939 0.125753 0.048917 0.071794 0.07039425
Fz 0.029747 0.04493 0.032613 0.016043 0.04558526
Mx 0.046139 0.034907 0.035081 0.09889 0.04618616
My 0.119422 0.046062 0.048731 0.053739 0.09551147

Mean error rates of the ELM method results (%)

Fx Fy Fz Mx My
Component of the multi-axis F/M sensor ~ Fx 0.115497  0.175094  0.030389  0.024535  0.04926632
Fy 0.131123  0.082495  0.04847 0.019178  0.02742444
Fz 0.00993 0.029112  0.039664  0.009201  0.0096173
Mx 0.036472 0.041075 0.030918 0.032761 0.01212463
My  0.047884  0.024466  0.029846  0.010353  0.01428644

Table 2
The comparison of the decoupling algorithms respectively based on LS, BP and ELM.
Generalization
Decoupling algorithms  Advantages Disadvantages Running speed performance
LS Easy to perform (1) Depends on a set of data that Relatively fast Bad
covers most of the measurement
range of the sensor.
(2) The relationship between the
applied weights and output
voltages is not completely linear.
BPNN Theoretically able to map an (1) Too many parameters Very slow Relatively good
arbitrary nonlinear relationship including the network layer
number, neurons number, initial
weights and learning rate, all of
which are hard to be determined.
(2) Easy to fall into a local
minimum point.
(3) Generalization performance is
largely dependent on the training
samples.
(4) A long training time due to
the continuous iteration process.
ELM Extremely fast learning speed and (1) It is difficult to determine the Extremely fast Good
good generalization performance. number of the hidden layer
neurons, which greatly influence
the ELM network.
(2) Too many hidden layer
neurons will cause the
over-fitting problem.
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