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a b s t r a c t 

Multi-axis robotic Force/Moment (F/M) sensors are capable of simultaneously detecting multiple components of 

force (Fx, Fy, and Fz), as well as the moments (Mx, My and Mz). This enables them to be frequently used in many 

robotic applications. Accurate, time-effective calibration and decoupling procedures are critical to the implemen- 

tation of these sensors. This paper compares the effectiveness of decoupling methods based on Least-Squares (LS), 

BP Neural Network (BPNN), and Extreme Learning Machine (ELM) methods for improving the performance of 

multi-axis robotic F/M sensors. In order to demonstrate the effectiveness of the decoupling methods, a calibration 

and decoupling experiment was performed on a five-axis robotic F/M sensor. The experiments demonstrate that 

the ELM based decoupling method is superior to LS and BPNN based methods. The presented theoretical and 

experimental demonstrations provide a comprehensive description of the calibration and decoupling procedures 

of multi-axis robotic F/M sensors. This work reveals that the ELM method is an appropriate and high performing 

decoupling procedure for multi-axis robotic F/M sensors. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-axis robotic Force/Moment (F/M) sensing is an important

ranch of robotic sensing intended to measure the external forces and

oments on robotic manipulators. Multi-axis sensing has been widely

onsidered in both industry and academic research and also plays an

ncreasing role in the fields of robotics, haptics, virtual reality, etc. in

rder to acquire relevant information from physical interactions [1,2] .

ecently, researchers have investigated and developed many F/M sens-

ng systems with adequate performance via both direct and indirect ap-

roaches [3,4] . A six-axis F/M sensor can measure the tangential force

erms along x-, y-, and normal force term along z-axis (Fx, Fy, and Fz) as

ell as the moment terms about x-, y-, and z-axis (Mx, My, and Mz) si-

ultaneously [5] . Multi-axis F/M sensors refer to sensors that can detect

ess than the six terms, to which the most commonly used F/M sensors

re three-, or six-axis [6–8] . 

The trend towards flexibility in manipulation and effective con-

rol progressively requires high performance multi-axis F/M sensors in

obotics and automation. For this purpose, continuous improvement ap-

roaches have been attempted. In this process, much of the research has

evealed interesting scientific questions and technological challenges in
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eveloping high-precision and robust F/M sensing systems. Several re-

earchers have designed a wide variety of multi-axis F/M sensors with

ovel structures in order to improve the sensing accuracy. For example,

eng et al. presented a novel six-axis accelerometer based on a structure

f dual annular membranes [9] . 

Precise calibration and decoupling of multi-axis F/M sensor is crit-

cal and can be challenging. More specifically, the calibration process

f multi-axis F/M sensors refers to the relationship between the sen-

ors output voltages and the applied load. This relationship should be

ccurate and reliable according to the applied standard and maintain

 certain accuracy of measurement. Also, the majority of the existing

ulti-axis F/M sensors have inherent highly coupled interference errors

mong their components (especially between component F x and com-

onent M y , component F y and component M x respectively), which are

nfluenced by the sensing principle, manufacturing process, EE struc-

ure and detection mode [7,10,11] . The coupling effect produces a sig-

ificant decrease in accuracy of the sensor and requires complicated

ecoupling algorithms for compensation [12,13] . Therefore, particular

mphasis has been given to the decoupling algorithms of multi-axis F/M

ensors [15] . 

Wu and Cai [16] constructed a unique six-axis F/M sensor to measure

he interactive force between surgical tools and soft tissue. This can ide-

http://dx.doi.org/10.1016/j.rcim.2017.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/rcim
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Fig. 1. Schematic illustration of a multi-axis F/M sensor. 
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Fig. 2. Coupling model of multi-component F/M sensor. 
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lly be used for haptic information acquisition in virtual surgery. The

uthors proposed a novel Elastic Element (EE) based on a decoupling

echanism with that has a sliding structure. The calculated expanded

ncertainty and coupling error of the sensor are 0.1% F.S. and 0.89%

.S, respectively. Yuan et al. [8] constructed a six-axis F/M sensor based

n a typical EE with double cross-beam structures for humanoid robot

oot. This sensor is capable of over 1000 N of total vertical load, and after

inear static decoupling, its repeatability error and interference error are

ess than 1.88% F.S. and 3.0% F.S., respectively. Dasgupta et al. [17] dis-

losed a design methodology for the Stewart platform sensor structure

ased on the optimal conditioning of the force transformation matrix.

nlike the traditional EEs that measure all the F/T components with a

ingle monolithic structure, this kind of sensor employs limbs of the par-

llel mechanism to detect the F/M components. This uniquely makes it

ossible to provide de-coupling F/M information with high stiffness and

igh sensitivity. Recently, a nonlinear static decoupling algorithm based

n a coupling error model and six separate Support Vector Regressions

SVRs) for 3-axis force sensors was proposed. In this study, the maxi-

um interference error was claimed to be within 1.6% F.S. [18] . 

In this paper, we study the theoretical and experimental demonstra-

ions of several proposed decoupling methods such as LS, BPNN, and

LM. Calibration and decoupling experiments with the proposed meth-

ds are carried out on a five-axis F/T sensor, and the results are com-

ared and discussed. 

. Multi-axis F/M sensor system and its fundamental principle 

Configurations adopted in multi-axis F/M sensors originate from var-

ous measurement principles such as resistive, capacitive, inductive,

iezoelectric, magnetic and optical methods [19] . The most commonly

sed approaches out of these principles relies on resistive or piezoresis-

ive measuring. The most well-known resistive transducers utilized on

ulti-axis F/M sensors are strain gauges. The measurement chain of the

ulti-axis F/M sensor system that uses the resistive method consists of

everal blocks, which can be observed in Fig. 1 . 

When bonded onto the EE of the sensor, the strain gauges will un-

ergo changes of resistance that correspond to the deformation of the

E. This relationship is given by 

𝑅 𝑖 = 𝐺 𝜀 𝑖 𝑅 𝑖 (1)

here R i is the original resistance of the i th strain gauge, G and 𝜀 i are the

auge factor and the strain, respectively. Provided that the EE behaves

ithin the elastic range of the material, the occurred strain, 𝜀 i, and the

pplied load, L, are related by the following equation: 

 𝑖 = 𝑓 𝑖 ( 𝐿 ) (2)

Full-bridge measure circuits are always used to detect the small re-

istive changes with high sensitivity and inherent linearity. The output

oltage of the j th bridge can be expressed as 

𝑈 𝑗 = 

1 
4 
𝑈 𝑒 𝐺( 𝜀 𝑗1 − 𝜀 𝑗2 + 𝜀 𝑗3 − 𝜀 𝑗4 ) (3)

here U e denotes the voltage excitation source, and 𝜀 jk represent the

train in the k th gauge of the j th full-bridge circuit. 
302 
Regarding multiple axis F/M sensors, several components will simul-

aneously generate output signals when a single F/M component is ap-

lied onto the sensor. This is mainly caused by the monolithic structure

f the EE and the inherent manufacturing error. The coupling model of

he multi-component F/M sensor is illustrated in Fig. 2 . 

Therefore, the output of the sensor composed of n full-bridge circuits

U ∈ℜ 

n can be expressed as 

𝐔 = 𝐰𝐅 + 𝐛 (4)

here w ∈ℜ 

n ×m and b ∈ℜ 

n represent the coupling coefficient and bias

atrices, respectively, and F ∈ℜ 

m represents the applied load vector

hat contains three force components and three moment components

pplied to the center of the sensor. The output can also be expressed as

𝐔 = 𝐓𝐅 (5)

here T ∈ℜ 

n ×m is the transformation matrix, which depend on the

tructure and geometrical dimensions of the EE, the particular locations,

nd the configuration of the strain gauges bonded on the EE. 

Signal conditioning of the F/M sensor includes amplification, isola-

ion, thermal compensation, filtering, and range matching to qualify and

nhance the sensor output △U to be suitable for processing. 

The main challenge in processing the signals from the F/M measure-

ent is related to the methods used to extract useful information from
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Fig. 3. Calibration setup and decoupling procedure of the multi-axis F/M sensor. 

Fig. 4. Five-axis robotic F/M sensor: (a) Sketch of the sensor structure; (b) five-axis F/M 

sensor prototype. 
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he obtained sensor output signal. It is typically in the microvolt range

hich can provide a challenge. A microprocessor or a host computer is

tilized to acquire and process the F/M information, as well as to present

he measurement data in a manner that is useful for human interpreta-

ion. One of the most important tasks in processing the signals from the

ensor is related to the determination of the relationship between the

aw output signals and the actual applied load vector. This is also re-

erred to as Calibration and Decoupling. The successful implementation

f multi-axis F/M sensors in robotic systems depends primarily on the

evel of understanding associated with their calibration and decoupling

ethods. 

. Calibration and decoupling methods 

Precise calibration and decoupling of multi-axis F/M sensor systems

s critical and can be challenging. The most commonly utilized calibra-

ion procedure for the multi-axis F/M sensor begins by applying known

eference forces or moment components individually to the sensor from

he minimum to maximum measurement range with a constant incre-

ent. Meanwhile, the sensor output (volts) is monitored and recorded

t each set point accordingly. After repeating the mentioned procedure

ve times in a cyclical pattern, the recorded data can be utilized to cal-

brate and decouple the sensor via the chosen method. The calibration

etup and decoupling procedure of the sensor, as shown in Fig. 3 , was

erformed as follows: 

1. Firmly fix the sensor to the calibration platform with a loading cap

bolted on its top. 

2. Adjust the zero point of the output voltages of each component of

the sensor. 

3. Apply different weights on each component of the sensor within its

measurement range, first gradually increasing to the positive full

scale, and then decreasing to zero. Meanwhile, the output voltages

of each component are recorded as samples. 

4. The loading cycle is performed five times for each component. 

A five-axis F/M sensor with a coupling error of 3% F.S. and a maxi-

um relative error of 5% F.S. has been developed by our research team

as shown in the Fig. 4 ) [20] . 

The five-axis robotic F/M sensor used in this calibration experiment

an measure the three contact forces along all three Cartesian coordi-
303 
ates (Fx, Fy, and Fz) and the according moments about two tangential

xes (Mx and My). It behaves with good performance when measuring

 single force or moment component. However, when the measurement

s not limited to one force or moment there exists high coupling error

mong the F/M components. This is observed in Fig. 5 . The coupling

rror makes it difficult to perform highly accurate multi-axis F/M mea-

urements. 

The following sections will focus on understanding various linear

nd nonlinear decoupling methods, as well as the corresponding experi-

ents that were used to determine the optimal method. This knowledge

trives to improve the performance of the multi-axis F/M sensor system.

.1. Linear static calibration and decoupling method 

Multi-axis F/M sensors convert the applied load F to an output vector

U. If the sensor is linear, the applied load can then be derived as

ollows: 

 = 𝐓 

# 𝚫𝐔 + ( 𝐈 − 𝐓 

# 𝐓 ) 𝐳 (6)

here 𝐓 

# ∈ ℜ 

𝑚 ×𝑛 is the generalized inversion of transformation matrix

 and z is an arbitrary n ×1 vector. Usually the component number of

he multi-axis F/M sensor, m, is less than or equal to 6 (such as 3-axis,

-axis, and 6-axis F/M sensor), while the full-bridge circuits number, n,

hould be greater than or equal to m . 

The Least-Squares (LS) technique, the most common method used

or linear static decoupling of multi-axis F/M sensors, has been widely

sed for identification and calibration. This is done using a wide set of

nown F/M vectors (i.e., F i carefully selected to adequately span the

ensor measurement range) and the corresponding output vectors 𝚫U i . 

Assuming the calibration data ( F i , 𝚫U i ) is available, and the output

ignals retrieved from the sensor can be expressed as follows: 
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= 
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Therefore, the coupling coefficient and bias matrices can be obtained

s 

 

𝐰 

𝑇 

𝐛 𝑇 
] 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
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𝐅 1 𝐅 2 ⋯ 𝐅 𝑝 
1 1 ⋯ 1 

] ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐅 𝑇 1 1 

𝐅 𝑇 2 1 

⋮ ⋮ 

𝐅 𝑇 
𝑝 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

−1 [ 
𝐅 1 𝐅 2 ⋯ 𝐅 𝑝 
1 1 ⋯ 1 
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𝑇 
2 

⋮ 
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(8) 

here p represents the total number of calibration data. 

 

𝐰 

𝑇 

𝐛 𝑇 
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𝑝 ∑

𝑖 =1 
𝐅 𝑖 𝐅 𝑇 𝑖 

𝑝 ∑
𝑖 =1 

𝐅 𝑖 
𝑝 ∑

𝑖 =1 
𝐅 𝑇 
𝑖 

𝑝 

⎞ ⎟ ⎟ ⎟ ⎠ 
−1 ⎛ ⎜ ⎜ ⎜ ⎝ 

𝑝 ∑
𝑖 =1 

𝐅 𝑖 𝚫𝐔 

𝑇 
𝑖 

𝑝 ∑
𝑖 =1 

𝚫𝐔 

𝑇 
𝑖 

⎞ ⎟ ⎟ ⎟ ⎠ (9) 

he coupling coefficient and bias matrices can be written as 

 

𝑇 = 𝐀 

𝑝 ∑
𝑖 =1 

𝐅 𝑖 𝚫𝐔 

𝑇 
𝑖 
− 𝐀𝐁 

𝑝 ∑
𝑖 =1 

𝚫𝐔 

𝑇 
𝑖 

(10) 

 

𝑇 = − 𝐁 

𝑇 𝐀 

𝑝 ∑
𝑖 =1 

𝐅 𝑖 𝚫𝐔 

𝑇 
𝑖 
+ 

(
𝐁 

𝑇 𝐀𝐁 + 1∕ 𝑝 
) 𝑝 ∑
𝑖 =1 

𝚫𝐔 

𝑇 
𝑖 

(11)

ith 

 = 

( 

𝑝 ∑
𝑖 =1 

𝐅 𝑖 𝐅 𝑇 𝑖 − 1∕ 𝑝 
𝑝 ∑

𝑖 =1 

𝑝 ∑
𝑗=1 

𝐅 𝑖 𝐅 𝑇 𝑗 

) −1 

(12) 

 = 1∕ 𝑝 
𝑝 ∑

𝑖 =1 
𝐅 𝑖 (13)
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Fig. 5. The robotic five-axis F/M sensor outputs with coupling: (a) output of component Fx (similar with Fy); (b) output of component Fz; (c) output of component Mx; (d) output of 

component My. 

Fig. 6. Architecture of the BP NN for predicting multi-axis F/M. 
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The precision of the results obtained with this method depends on

he accuracy and distribution of the obtained calibration data. It also

llustrates that there needs to be a large amount of calibration data (with

recise application of many known load vectors) in order to be useful for

stimating coupling error. It can be challenging to achieve an optimal

rade-off between the coupling error elimination and the execution time

f data collection. 

.2. Decoupling method based on BP Neural Network (NN) 

The F/M sensor output is susceptible to nonlinearity inherited from

he EE device, interference as well as hysteretic behavior. As a conse-

uence, a linear static calibration and decoupling method can be time-

onsuming and sometimes not possible. 

Artificial Neural Networks, designed as a computational model, have

een applied successfully in a wide range of applications due to their

bility to accurately model systems in demanding real-time operation

21] . A BP NN with a single hidden layer of 13 fully connected units is

sed to predict the multi-axis F/M as illustrated in the Fig. 6 . 

The sigmoid function of the hidden nodes is represented by: 

( 𝑛𝑒𝑡 ) = 

2 
−2·𝑛𝑒𝑡 − 1 (14)
1 + 𝑒 

304 
The linear activation function g is selected for the output nodes. The

N function with p hidden nodes can be expressed as 

 = 𝑔( 𝐭 𝑓 ( 𝐫 𝚫𝐔 + 𝐯 ) + 𝐦 ) (15)

here L = [Fx, Fy, Fz, Mx, My, Mz] T , r and t represent weight matrices

f the hidden layer and the output layer, respectively, v and m are bias

atrices of the hidden layer and the output layer, respectively. The uni-

ersal approximation capability of BP NN with sufficient hidden nodes

nables its ability to approximate a nonlinear function. After the NN is

ufficiently trained with the calibration data, it can be utilized to detect

he applied F/M. The number of hidden layer nodes has a large impact

n the prediction precision because too few or too many nodes will cause

arge prediction error that can be associated with the over-fit phenom-

na. The number of hidden layer nodes is initially set between 6 and 15

n this study. As shown in Fig. 7 , the mean square error of the output

ramatically decreases with an increase in the number of hidden layer

odes until it reaches 13, at which point the computation time arrives

t its minimum. 

.3. Decoupling method based on Extreme Learning Machine algorithm 

ELM) 

ELM was proposed by Huang et al. [22] as a learning algorithm for

 single hidden layer feed-forward neural network, as shown in Fig. 8 .

nlike the traditional BP algorithm, the ELM randomly chooses the con-

ection weights between the input layer and hidden layer, as well as the

ias of hidden layer neurons. It has been widely implemented in pattern

ecognition, computer vision, data mining, signal processing, and con-

rol systems due to its extremely fast learning speed and outstanding

verall performance. 

Generally, the decoupling method of multi-axis F/M sensors can be

educed in the following manner. Suppose that there are N calibra-

ion samples { u i , f i }, where u i = [ u i1 , u i2 , u i3 , u i4 , u i5 , u i6 ] 
T is a multi-

imensional input (reaches the maximum at 6 when the F/M sensor has

 axes) for every sample i and f i = [ f i1 , f i2 , f i3 , f i4 , f i5 , f i6 ] 
T is a multi-

imensional output for every sample i . The input and output represent

he F/M sensor full-bridge output voltages and applied load vector re-

pectively. The number of the hidden layer neurons, L, is derived from
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Fig. 7. Mean square error (a) and computation time (b) of the neural network training versus number of the neurons of hidden layer. 

Fig. 8. The network structure diagram of ELM decoupling. 
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xperiments. The output of a network with L hidden nodes and an acti-

ation function g (x) can be described as 

 𝒊 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑡 𝑖 1 
𝑡 𝑖 2 
⋮ 
𝑡 𝑖 6 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 6×1 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐿 ∑
𝑗=1 

𝛽𝑗1 𝑔( 𝒘 𝒋 ⋅ 𝒖 𝒊 + 𝑏 𝑗 ) 

𝐿 ∑
𝑗=1 

𝛽𝑗2 𝑔( 𝒘 𝒋 ⋅ 𝒖 𝒊 + 𝑏 𝑗 ) 

⋮ 
𝐿 ∑
𝑗=1 

𝛽𝑗6 𝑔( 𝒘 𝒋 ⋅ 𝒖 𝒊 + 𝑏 𝑗 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 6×1 
= 

𝐿 ∑
𝑗=1 

𝜷𝒋 𝑔( 𝒘 𝒋 ⋅ 𝒖 𝒊 + 𝑏 𝑗 ) , 𝑖 = 1 , ..., 𝑁

(16) 

here 𝒘 𝒋 = [ 𝑤 1 𝑗 , 𝑤 2 𝑗 , ..., 𝑤 6 𝑗 ] T , b j and 𝜷𝒋 = [ 𝛽𝑗1 , 𝛽𝑗2 , ..., 𝛽𝑗6 ] 𝑇 represent

he input weights, bias and output weights of the j th hidden layer neu-

ons, respectively. The ELM reliably approximates N samples with min-

mum error following the relationship 

𝐿 

𝑗=1 
𝜷𝒋 𝑔( 𝒘 𝒋 ⋅ 𝒖 𝒊 + 𝑏 𝑗 ) = 𝒇 𝑖 , 𝑖 = 1 , ..., 𝑁 (17)

The formula (17) can be rewritten as the following matrix form 

 𝜷= 𝑭 (18) 

here the matrix H is referred to be the hidden layer output matrix of

he network 

( 𝒘 𝟏 , 𝒘 𝟐 , ..., 𝒘 𝑳 , 𝑏 1 , 𝑏 2 , ..., 𝑏 𝐿 , 𝒖 𝟏 , 𝒖 𝟐 , ..., 𝒖 𝑵 

) 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
g ( 𝒘 𝟏 ⋅ 𝒖 𝟏 + 𝑏 1 ) g ( 𝒘 𝟐 ⋅ 𝒖 𝟏 + 𝑏 2 ) ⋯ 

g ( 𝒘 𝑳 ⋅ 𝒖 𝟏 + 𝑏 𝐿 ) 
g ( 𝒘 𝟏 ⋅ 𝒖 𝟐 + 𝑏 1 ) g ( 𝒘 𝟐 ⋅ 𝒖 𝟐 + 𝑏 2 ) ⋯ 

g ( 𝒘 𝑳 ⋅ 𝒖 𝟐 + 𝑏 𝐿 ) 
⋮ ⋮ ⋱ ⋮ 

g ( 𝒘 𝟏 ⋅ 𝒖 𝑵 

+ 𝑏 1 ) g ( 𝒘 𝟐 ⋅ 𝒖 𝑵 

+ 𝑏 2 ) ⋯ 

g ( 𝒘 𝑳 ⋅ 𝒖 𝑵 

+ 𝑏 𝐿 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 𝑁×𝐿 
(19) 
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= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝛽𝑇 1 
𝛽𝑇 2 
⋮ 
𝛽𝑇 
𝐿 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 𝐿 ×6 
, 𝑭 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑓 𝑇 1 
𝑓 𝑇 2 
⋮ 
𝑓 𝑇 
𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 𝑁×6 

(20)

Therefore, the output weights 𝜷L ×6 can be found analytically by

inimizing the error function 𝜁 with randomly allocated input weights

 𝐿 ×6 = [ 𝒘 1 , 𝒘 2 , ⋯ 𝒘 

𝐿 
] T and hidden bias values 𝒃 𝐿 ×1 = [ 𝑏 1 , 𝑏 2 , ⋯ , 𝑏 𝐿 ] T 

or a given number of hidden neurons. 

= 

𝑁 ∑
𝑖 =0 

‖‖𝒕 𝒊 − 𝒇 𝑖 
‖‖ (21) 

Moreover, the output weights of hidden layer neurons ( 𝜷L ×6 ) can be

cquired by solving the least-square norm solution, 

H ̂𝜷 − 𝑭 
‖‖‖ = min 

𝜷
‖H 𝜷 − 𝑭 ‖ (22) 

Finally, the least-square norm solution of the output weights reduces

o 

̂ = H 

+ 𝑭 (23) 

here H 

+ represents Moore–Penrose generalized inverse matrix of the

atrix H. 

According to the above analysis, the training procedure of the ELM

ecoupling method can be concluded as follows: 

1) Randomly allocate the input weights ( w L ×6 ) and bias ( b L ×1 ) for the

hidden layer neurons. 

2) Calculate the hidden layer output matrix H. 

3) Calculate the output weights of the hidden layer neurons with 𝛽 =
H 

+ 𝑭 . 

According to the theorem justified in Huang [22] , if the number of

idden neurons are equal to the training sample number, the above net-

ork would approximate the training sample with zero error for any

andomly chosen w L ×6 and b L ×1 . However, when the sample number,

, is very large, the number of hidden layer neurons, L, is typically

mall in comparison to N in order to reduce calculation effort. Initially,

e chose to use 20–50 hidden neurons, and determined through exper-

ments that the MSE of the predicted value and the computation time

each their optimal values when the number reaches 35, as shown in

ig. 9 . 

. Results 

For the experimental comparison of the proposed decoupling meth-

ds, a calibration and decoupling procedure of a robotic five-axis F/M

ensor was performed. The data recorded in the calibration and decou-

ling experiment is normalized and then used as training data to test

nputs and outputs. We selected 80% of the total set for training the BP
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Fig. 9. The selection of the ELM network’s hidden layer neurons number according: (a) the mean square error (MSE) of the predicted value with ELM; (b) the decoupling running time 

based on ELM algorithm. 

Fig. 10. Error rates of the decoupling methods under component Fx (a), Fy (b), Fz (c), Mx (d), and My (e). 
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N and ELM, and utilized the remaining 20% of the set to test the de-

oupling methods. As illustrated in Fig. 10 , the ELM and BPNN based

ecoupling methods are consistently superior to the LS based method,

nd the BPNN method is very comparable with, but not as accurate, to

he ELM method. 

The mean error rates of the three decoupling methods are summa-

ized in Table 1 . The maximum mean error rates of the LS, BPNN, and
306 
LM are 9.39%, 0.16%, and 0.18%, respectively. Although the maxi-

um mean error rate of the ELM is larger than that of BPNN method,

he accuracy of the sensor with the ELM decoupling method is consis-

ently better than the BPNN method. In general, the results show that

here is a significant improvement in the accuracy of the multi-axis F/M

ensor with the BPNN and ELM decoupling methods. 
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Table 1 

Results of the decoupling methods. 

Mean error rates of the LS method results (%) 

Fx Fy Fz Mx My 

Component of the multi-axis F/M sensor Fx 0 .406277 0 .887277 1 .208629 0 .15437 0 .1797419 

Fy 1 .210813 1 .518854 1 .069594 0 .164438 0 .53743255 

Fz 1 .916879 5 .256272 9 .393737 0 .893552 2 .72386586 

Mx 0 .333648 0 .844161 1 .852485 0 .188827 0 .20264124 

My 1 .319024 0 .323774 1 .597878 0 .099907 0 .70437202 

Mean error rates of the BPNN method results (%) 

Fx Fy Fz Mx My 

Component of the multi-axis F/M sensor Fx 0 .147007 0 .163862 0 .036315 0 .069732 0 .1041335 

Fy 0 .113939 0 .125753 0 .048917 0 .071794 0 .07039425 

Fz 0 .029747 0 .04493 0 .032613 0 .016043 0 .04558526 

Mx 0 .046139 0 .034907 0 .035081 0 .09889 0 .04618616 

My 0 .119422 0 .046062 0 .048731 0 .053739 0 .09551147 

Mean error rates of the ELM method results (%) 

Fx Fy Fz Mx My 

Component of the multi-axis F/M sensor Fx 0 .115497 0 .175094 0 .030389 0 .024535 0 .04926632 

Fy 0 .131123 0 .082495 0 .04847 0 .019178 0 .02742444 

Fz 0 .00993 0 .029112 0 .039664 0 .009201 0 .0096173 

Mx 0 .036472 0 .041075 0 .030918 0 .032761 0 .01212463 

My 0 .047884 0 .024466 0 .029846 0 .010353 0 .01428644 

Table 2 

The comparison of the decoupling algorithms respectively based on LS, BP and ELM. 

Decoupling algorithms Advantages Disadvantages Running speed 

Generalization 

performance 

LS Easy to perform (1) Depends on a set of data that 

covers most of the measurement 

range of the sensor. 

(2) The relationship between the 

applied weights and output 

voltages is not completely linear. 

Relatively fast Bad 

BPNN Theoretically able to map an 

arbitrary nonlinear relationship 

(1) Too many parameters 

including the network layer 

number, neurons number, initial 

weights and learning rate, all of 

which are hard to be determined. 

(2) Easy to fall into a local 

minimum point. 

(3) Generalization performance is 

largely dependent on the training 

samples. 

(4) A long training time due to 

the continuous iteration process. 

Very slow Relatively good 

ELM Extremely fast learning speed and 

good generalization performance. 

(1) It is difficult to determine the 

number of the hidden layer 

neurons, which greatly influence 

the ELM network. 

(2) Too many hidden layer 

neurons will cause the 

over-fitting problem. 

Extremely fast Good 
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. Discussion and conclusions 

This paper presents both theoretical and experimental results on the

omparison of several decoupling methods for multi-axis F/M sensors.

he performance comparison of the three decoupling algorithms is illus-

rated in Table 2 . A novel method for decoupling multi-axis F/M sensors

s proposed based on ELM algorithm. The experiments illustrate that the

LM based decoupling method can attain higher accuracy while main-

aining efficiency. Moreover, it is shown that the performance of the LS

ased decoupling method primarily depends on the application of a set

f data that sufficiently spans the measurement range of the F/M sensor.

his is not the case with the ELM and BPNN methods. Also, it was found

hat the proposed ELM based decoupling method requires less training

ime compared with BPNN. 
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