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A Multimodal Robust Recognition Method for
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Abstract—In light of the critical importance of achieving
robust object recognition from multimodal data in robotic
operations, this article proposes a precise identification
method tailored for the grasping of objects using a multi-
flexible gripper in scenarios characterized by multimodal-
ity, limited samples, and complex environments. Terming
the BOSS-MI-ELM algorithm, this approach innovatively ex-
tracts [bag-of-SFA-symbols (BOSS)], fusion [association-
based fusion (AF)], and classifies [incremental extreme
learning machine (I-ELM)] features from multimodal data,
facilitating an efficient recognition process. The study em-
ploys fiber Bragg grating (FBG) and inertial measurement
unit (IMU) as information acquisition components, con-
structing a multimodal perception system and establishing
a corresponding grasping dataset. Through training and
testing on this dataset, empirical evidence demonstrates
that even with the utilization of only 20% of the dataset,
the BOSS-MI-ELM algorithm maintains a classification ac-
curacy of 95.54%. In the presence of Gaussian noise with
a mean of 0 and varying standard deviations, as well as
different degrees of partial data loss, the proposed method
still maintains robust recognition performance. In addition,
we have validated the effectiveness of this method in iden-
tifying objects grasped at different speeds. Furthermore,
comparative experiments were conducted on two publicly
available multimodal tactile datasets. The results indicate
that the BOSS-MI-ELM algorithm outperforms various base-
line models. The extensive experiments collectively demon-
strate that this system provides a viable solution for robot
object recognition under multimodal tactile perception.
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I. INTRODUCTION

IN RECENT years, the application of flexible grasping
devices in robotic manipulation tasks has steadily grown,

closely associated with the emergence of soft robotics technol-
ogy [1]. This trend is primarily attributed to the enhanced safety
and passive adaptability exhibited by flexible grasping devices
during interaction, in comparison to rigidly fixed devices [2].
Robotic grasping tasks encompass various activities, including
target detection, grasp pose estimation, and object property
recognition, with the majority relying on visual methods for
exploration [3], [4], [5], [6]. However, visual perception has
inherent limitations, necessitating the integration of tactile sens-
ing modalities to accomplish specific tasks, such as identifying
transparent objects [7] and objects with similar color and shape
features [8], [9]. Tactile sensors contribute to capturing infor-
mation, such as hardness, texture, roughness, and smoothness
through physical contact, thereby enhancing the effectiveness
and adaptability of grasping devices during task execution [10].
However, current tactile-based grasping still faces challenges
due to the lack of standardized sensor platforms and extensive
datasets [11]. Therefore, for flexible grippers, the integration of
multimodal tactile sensing capabilities and the achievement of
goal-oriented grasping and recognition in scenarios with limited
samples and complex environments are challenging tasks with
significant implications for the intelligence and safety of robotic
operations.

In the field of rigid grasping research, Zhang et al. [12] effec-
tively identified the hardness and elasticity of grasped objects
using NumaTac sensors to capture dc pressure signals and ac
pressure vibration signals. Lin et al. [13] verified that object in-
stances can be accurately identified based on tactile information
alone by applying two GelSight tactile sensors to stiff fingers.
Xia et al. [14] solved the problem of pose uncertainty using a
robotic hand equipped with tactile and finger joint displacement
sensors. Chu et al. [15] successfully classified haptic descriptors
using BioTacs sensors to collect multimodal data on objects.
Bhattacharjee et al. [16] used multimodal sensors to capture
variables associated with moving objects to identify properties,
such as object stiffness, mobility, and material properties. These
studies utilized either unimodal or multimodal tactile sensors.
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By integrating information from different sensors, the robot can
fully perceive its surroundings, thus improving the robustness
and accuracy of the recognition.

However, grasping and recognizing objects based on flexible
grippers is still a major challenge. Bai et al. [17] mounted
resistive pressure sensors on a silicon-based manipulator to help
recognize the roughness of an object. Jin et al. [18] utilized tri-
boelectric nanogenerator (TENG) sensors to recognize an object
by capturing continuous motion and positional information of a
flexible finger. Zuo et al. [19] used ionic hydrogel-based strain
and haptic sensors to achieve object recognition. Liu et al. [20]
proposed a novel GelSight Fin Ray design that enhances robotic
flexible fingers with high-resolution tactile sensing, object ori-
entation estimation, and force marker tracking. Although these
studies demonstrate the feasibility of flexible fixtures, their
haptic feedback information is to some extent unidimensional.
Kerzel et al. [21] pointed out that tactile perception can be viewed
as a complex multimodal perception process. Systems that can
receive information from different modalities have two main
advantages over single data modality systems: performance and
reliability [22].

Moreover, these works either employ electromagnetic-
sensitive components for measurement, susceptible to electro-
magnetic interference issues with complex wiring and zero drift;
or they use visually based tactile sensors with larger volumes
and rigidity, making integration on flexible grasping devices
challenging. In response, Lyu et al. [23] designed a modal
perception system based on flexible grippers using fiber Bragg
grating (FBG). In recent years, FBG has been widely used in
force sensing for medical robots due to its advantages, such
as flexibility, resistance to electromagnetic interference, small
size, lightweight, good biocompatibility, and zero temperature
drift [24], [25]. FBG provides higher accuracy [26], but it
is susceptible to temperature changes and prone to breakage.
This introduces noise injection and data missing in the signal
feedback, posing significant challenges to the accuracy and
robustness of grasping recognition by flexible grippers [27].
Simultaneously, constructing large-scale training samples is
challenging for target recognition by flexible grippers, leading
to issues such as decreased accuracy in network training.

Aiming at the above challenges, this article provides an
in-depth analysis of the multimodal information involved in
the flexible manipulator when it performs the grasping task, as
shown in Fig. 1. We plan to utilize multimodal data to improve
the perceptual performance of the system. While realizing gen-
eral object recognition based on FBG, we combine the inertial
measurement unit (IMU) to collect the motion parameters of
the flexible gripper, and jointly obtain the implicit information,
such as the hardness, roughness, and shape and size of the
grasped object, so as to realize the recognition of the grasped
object under limited samples and complex environments. And a
multimodal tactile sensing method is proposed. The method is
composed of the bag-of-SFA-symbols (BOSS) model, which has
excellent performance in time series classification models, the
association-based fusion (AF) framework, which is suitable and
effective in arbitrary multimodal fusion, and the extreme learn-
ing machine (ELM) classifier, which can classify quickly and

Fig. 1. Multimodal information representation of flexible grippers
grasping target recognition.

accurately. It provides a robust solution for scenarios involving
multimodal perception, limited samples, as well as the presence
of noise and data gaps in robotic grasping scenes. Moreover,
with good scalability, the three parts of feature extraction, fusion,
and classification can be replaced by more advanced methods
in the future. The primary contributions of this research can be
summarized as follows:

1) For the first time, an integrated system of FBG and IMU
on a robotic flexible finger is introduced, forming a system
capable of collecting multimodal force-tactile data, as
illustrated in Fig. 1. Simultaneously, a novel method
named BOSS-MI-ELM was proposed for recognizing the
grasping targets of multifingered robots.

2) A multimodal haptic dataset of 1694 samples built at cer-
tain gripping speeds for nine common object categories.
And a small dataset built at three additional grasping
velocities.

3) Performance analysis of the BOSS-MI-ELM algorithm
was conducted using the self-constructed dataset, com-
paring it with several common baseline models, and con-
sidering the impact of data volume and gripper speed on
model performance.

4) The effectiveness and robustness of the BOSS-MI-ELM
algorithm were validated by injecting noise and introduc-
ing partial data loss operations into the dataset.

5) The application of this algorithm to publicly available
multimodal tactile datasets yielded satisfactory results.
It further substantiated the effectiveness of multimodal
data and the integration model with multiple fingers.
Moreover, an examination of the algorithm’s real-time
performance was conducted.

The rest of this article are organized as follows. Section II
provides a detailed exposition of the multimodal tactile percep-
tion system. Section III delves into the recognition algorithm
BOSS-MI-ELM for grasping targets with a flexible gripper.
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Fig. 2. Grasping platform, multimodal tactile data, and test examples
of the system. (a) Flexible claw, sensor arrangement, and parameters.
(b) Captured multimodal force-tactile data. (c) The left is a test of the
platform gripping a sphere and sliding on a rough surface. The center
corresponds to the acceleration and strain captured by the test. The right
is the result of fitting the diameter of the sphere to the most value in the
collected strain and angle data, respectively.

Section IV comprises the experimental part of this study. Finally,
Section V concludes this article.

II. FLEXIBLE GRASPING SYSTEM AND MULTIMODAL SENSING

The three-finger flexible gripper in this study is driven by
a motor that moves the fingers through a screw to perform
the grasping and releasing actions. In addition, the gripper
was externally mounted with FBGs and IMUs to facilitate the
capture of strain, angle, angular velocity, and acceleration during
the grasping and releasing maneuvers. Fig. 2(a) illustrates the
structural configuration of the device and the relevant parameters
of the sensors, and (b) shows the effective data collected.

Since the flexible manipulator has both internal and external
senses [2], IMUs were mounted on the exterior of the flexible
claw to capture the external sensation after deformation more
accurately. While the IMU demonstrates the capability to capture
data along all three axes, it is imperative to acknowledge that the
inherent constraints imposed by the finger’s movement within
the fixture confine data acquisition to a singular plane. Hence,
the exclusively valid data comprises angle and velocity along
the X-axis and acceleration in the context of rotation around the
Z-axis (relative to IMU).

Furthermore, we employ FBG to monitor the strain exerted on
the claw during object manipulation. In contrast to the approach
undertaken by Lyu [23], who place FBG on the interior of the
flexible claw, resulting in secondary deformation when the claw
contacts an object, we adhere FBG to the exterior of the flexible
claw. This placement ensures that the deformation observed is
solely attributed to the bending of the claw itself, eliminating
the influence of object contact on FBG readings. The three
FBGs were packaged with a two-point encapsulation method,
exhibiting initial wavelengths (nm) of 1535.05, 1537.88, and
1538.1, all consistently sampled at a frequency of 100 Hz. Their
respective 3 dB bandwidths (nm) were determined as 0.33, 0.35,
and 0.32, while the reflectance percentages were measured at 85,
89.86, and 83.13. And the edge suppression ratios (dB) are all
18.

During the grasping process, we set the maximum angle
(Screw up to 5 revolutions) of closure of the claw to prevent
excessive grasping. We set an upper limit on the strain (1500 pm
FBG wavelength shift) for the FBG to ensure that the stress due
to deformation is within a certain range. Finally, we relied on
the current (0.55 A) of the flexible claw controller to control the
maximum value of the torque. Together, these ensure that the
claw does not damage the grasped object.

We recorded the strain of the FBG by sliding one of three
fingers over surfaces of different roughness, as well as the
acceleration in the IMUs using three balls of different diameters
grasped through the entire platform, as shown in the left and
center of Fig. 2(c). It can be seen that the strain obtained from
different surfaces or the acceleration obtained from different
balls in both tests are significantly different, which indicates that
the system has the potential ability to recognize the material
properties and size of objects. We fitted the strain and angle
acquired by the grasping balls with different diameters, and the
results are shown on the right of Fig. 2(c). The fitted results
illustrate the excellent linearity of the data acquisition part of
the system. Based on this, we designed the relevant perception
algorithms for recognizing different objects.

III. METHODOLOGY

The flowchart for this multifinger grasp target recognition
method is shown in Fig. 3. The subsequent sections provide
a detailed account of the specific procedures involved in this
method.

Definition: For single-finger force/tactile dataset denoted as
{Dp = (Tp

n, yn)
N
n=1|1 ≤ p ≤ P}, where p denotes the number

of distinct modalities and N signifies the total sample count.
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Fig. 3. overall framework of the BOSS-MI-ELM algorithm.

During the ensuing discourse, it is of consequence to highlight
that, due to the preliminary processing steps of the method
presented in this study not engaging in interfinger operations,
the act of distinguishing between individual fingers has been
deliberately omitted within the process of formulation.

A. Feature Extraction Based on BOSS

The BOSS algorithm [28] exhibits robust resistance to noise
and minor variations, showcasing excellent performance in the
context of time-series classification within a singular model [29].
However, its intrinsic distance classifier imposes limitations on
scalability. Hence, we selectively utilize its symbolic abstract
representation to extract features from force/tactile data, as
follows:

Step 1. Window creation: For any sample T p
n = {tpi }np

i=1 ∈
Tp, where np is the length of the sample sequence, it can be
divided into np − w + 1 subsequences of length w

Window(T p
n , w)

=
(
Sp
n,1:w, S

p
n,2:w, . . ., S

p
n,np−w+1:w

)
(1)

where

Sp
n,i:w =

(
tpi , t

p
i+1, . . ., t

p
i+w−1

)
(2)

which means this window starts at tpi and the length of it is w,
each window is typically Z-score normalized to obtain offset
and amplitude invariance.

Step 2. SFA transform: The Symbolic Fourier Approximation
(SFA) is employed, which utilizes a finite set of characters to
represent real-valued time series for low-pass filtering and string
representation. Specific operation reference [30]. After the SFA

Algorithm 1: BOSS-MI-ELM.
Input: D. Force/Tactile dataset for each individual finger,
with a total of M fingers;
w. Window size;
l. String length;
a. Alphabet size;
L. the highest power of data;
L0 and Lmax. The initial node and upper limit count for
each I-ELM, respectively;
E∗. Expected test error;
X∗. Unseen instances.
Output: Y∗. Predicted class for X∗

1: for each Force/tactile Data D do
2: for p = 1 to P do
3: Create windows based on (1);
4: SFA transformation for each window based on (3);
5: From Bp based on Dp by histogram statistics;
6: end for
7: for p = 1 to P do
8: for n = 1 to N do
9: Calculate φp(x

p
n) based on (4);

10: end for
11: From Hp based on Bp according to (5);
12: Calculate the relationship fusion matrix Rp based on

(6);
13: for n=1 to N do
14: Calculate ϕ(φp(x

p
n)) based on (7);

15: end for
16: From Ap based on Hp according to (9);
17: From Gp based on Ap according to (10);
18: end for
19: end for
20: for i = 1 to M do
21: Initialize the I-ELMi based on (11), (12) and (13);
22: for h = L0 to Lmax or e < E∗ do
23: for i = 1 to M do
24: Add note and train based on (14);
25: Update training error E based on (15);
26: end for
27: Calculate test error e by soft voting;
28: end for
29: Transform the unseen instances X∗ from 1 to 19 and

subsequently predicting X∗ by MI-ELM and soft voting.

transformation, each subsequence of length w in the window
will be mapped to a string of length l, resulting in np − w + 1
ordered strings for a time series of lengthnp, followed as follows:

Sp
n,i:w

SFA−−→ s1, s2, . . ., sl ∈
∑

a
(3)

where
∑

a represents an alphabet with a elements.
Step 3. Histogram-based statistics: To prevent an overem-

phasis on stable sections of a signal, numerosity reduction
techniques are employed. This involves retaining the string
symbolized by the previous window and discarding the current
window’s string if it matches the previous one. The results
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obtained after statistics are used as the features extracted from
the sample.

The efficacy of feature extraction based on BOSS is depicted
in the first figure of part A in Fig. 3, illustrating the transforma-
tion of force/haptic time series into vector features.

B. Feature Fusion Based on AF Framework

The association-based fusion method [31] is a general fu-
sion framework, which can be embedded into various exist-
ing multimodal classification problems to improve the perfor-
mance of classification problems. At the same time, it is also
a completely transparent explainable fusion strategy, which
can better improve the explainability of the model. The fusion
strategy consists of two steps: high-level information extraction
and associated information extraction. Datasets after feature
extraction are defined as B = {Bp|1 ≤ p ≤ P}, where the nth
sample of the dataset B = {(xp

n, yn)|1 ≤ n ≤ N)} for mode
p is xp

n = [bp1(x
p
n), b

p
2(x

p
n), . . ., b

p
mp

(xp
n)], where mp represents

the feature dimension.
First, we employ power encoding of features into the original

feature space to extract higher-order information. The origi-
nal mp-dimensional input features are mapped to the mpL-
dimensional space by A mapping φp

φp(x
p
n) = [hp

1(x
p
n), h

p
2(x

p
n), . . ., h

p
mpL

(xp
n)] (4)

where hp
j (x

p
n), j = l + L(k − 1) denotes the lth power of the

value bpk, 1 ≤ l ≤ L and 1 ≤ k ≤ mp, where k denotes the kth
feature. L is the largest power of the feature. Then, the original
feature dataset Bp ∈ B is transformed into

Hp = {(φp(x
p
n), yn)|(xp

n, yn) ∈ Bp} . (5)

Second, the relational fusion matrix Rp is defined to fuse the
dependent features and the relationships between them in an
explicit way. For the correlation strength between any two
dimensions, hp

i and hp
j , within the feature space, the Pearson

correlation coefficient is used to calculate

Rp(i, j) = ρ(hp
i , h

p
j ) =

cov(hp
i , h

p
j )

σhp
i
· σhp

j

=
E(hp

i − μhp
i
)(hp

j − μhp
j
)

σhp
i
· σhp

j

. (6)

A fusion matrix Rp ∈ RmpL×mpL containing all pairwise fea-
ture relations is obtained. Finally, the mpL-dimensional higher-
order information features are mapped to the mpL-dimensional
fusion feature space through a mapping ϕp

ϕp(φp(x
p
n)) = [ap1(x

p
n), a

p
2(x

p
n), . . ., a

p
mpL

(xp
n)] (7)

where

apj (x
p
n) =

mpL∑
k=1

(ωkRkjh
p
k(x

p
n))

= φp(x
p
n)(ω

T �Rp
:j) (8)

andω = [ω1, ω2, . . ., ωmpL] = [
1
1!
,

1
2!
, . . .,

1
L!︸ ︷︷ ︸

mpL

, . . .] ∈ RmpL,�

denotes multiplication of the corresponding elements and Rp
:j

denotes the jth column of the relationship fusion matrix Rp.
Therefore, the boosting training set Hp is transformed into

Ap = {(ϕp(φp(x
p
n), yn)|(φp(x

p
n), yn) ∈ Hp} (9)

Then, the radial basis kernel function is used to map the features
to the higher dimensional space:

Gp(i, j) = 〈ϕp(φp(x
p
i ),ϕp(φp(x

p
j )〉

= exp(−γ‖ϕp(φp(x
p
i )−ϕp(φp(x

p
j )‖2

2). (10)

After the above three steps, a new training set G = {Gp|1 ≤
p ≤ P} is created from the original feature setB. The process of
intramodal information fusion based on the AF framework and
the transformation through kernel function mapping is illustrated
in the second picture of part A in Fig. 3. Following the aforemen-
tioned transformation, each sample obtained from an individual
finger encompasses P feature vectors. By concatenating these
features, the fusion between distinct patterns is achieved, laying
the groundwork for training a single-finger classifier.

C. Multifinger I-ELM Classifier

The ELM algorithm, introduced by Huang et al. [32], offers a
straightforward and efficient learning approach that significantly
outperforms traditional models such as BP and SVM in terms
of training speed. However, the SLFNs that exhibit extreme
learning effects may require a higher number of hidden nodes
to achieve optimal performance [33]. Consequently, this study
adopts the incremental ELM [34], and synergistically combines
it with the block increment initialization technique, wherein
the initial number of nodes is deliberately set to a nonzero
value. For dataset above denoted as (x,Y), standard SLFN is
mathematically modeled as

Hβ = Y. (11)

H is called the hidden layer output matrix of the SLFNs and
H = g(w ∗ x+ b), g is the activation function, β is the output
weight of the hidden layer. The minimum norm least-squares
solution of the above linear system is

β̂ = H†Y (12)

where H† is the Moore–Penrose generalized inverse of matrix
H. The solution method suitable for any case is singular value
decomposition.

The I-ELM dynamically increases the nodes in its hidden
layer during training, but this process can be slow. To address
this, a novel approach combines the block increment initializa-
tion method with I-ELM. Initially, the node count is set to L0

followed by training to derive the output weights β0 for all nodes
using (11) and (12), resulting in the current training error

E = Y − β0HL0 . (13)

Subsequently, through iterative training, a node is incremen-
tally added, wherein the input weight and bias are randomly
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initialized. The output of the newly added hidden node HL̃ is
calculated and the output weight of this node is determined as

βL̃ =
E ·HT

L̃

HL̃ ·HT
L̃

. (14)

Then, training error E updating by

E = E − βL̃HL̃. (15)

By repeatedly adding nodes and obtaining corresponding output
weights according to (14), and updating training errors according
to (15) until the conditional loop is completed, a single-finger-
based classifier can be built. The schematic diagram for the
training of a single I-ELM is depicted in the last picture of part
A in Fig. 3.

D. Integrated Decision

According to our method, a classifier needs to be trained on
each finger, so the final classification needs to be made using
an integrated decision, in which case a soft voting mechanism
is applied, which can improve the accuracy and robustness of
the overall prediction. For any I-ELM-i, for which the corre-
sponding output is represented as prei = [pi1, pi2, . . . , pio], the
resulting voting outcome is outlined as follows:

Prediction =
1
M

M∑
m=1

prei

=
1
M

[
M∑

m=1

prem1,

M∑
m=1

prem2, . . . ,

M∑
m=1

premo

]
(16)

where o is the number of objects identified and M is the number
of fingers. Finally, according to the principle of maximum prob-
ability, the subscript value of the object class corresponding to
the number with the largest value is selected as the category
label obtained by the decision. The complete procedure of
BOSS-MI-ELM is shown in Algorithm 1.

IV. EXPERIMENTAL

A. Database and the Experimental Setting

Following the equipment overview presented in Section II, a
series of grasping experiments were conducted involving nine
common objects. The recorded data encompass the respective
grasping angle, angular velocity, acceleration, and strains of
three flexible fingers during the object-grasping process. The
grasping speed parameter was set at 25 (controller speed), and
due to the disparate sampling frequencies between FBG and
IMU, the FBG signals underwent downsampling. Furthermore,
each grasp’s FBG and IMU data were subjected to two separate
phase-based truncations to preserve the sensor signals during the
“grasp,” “hold,” and “release” phases of object manipulation. A
total of 1694 samples were generated, with a time step interval
of 130. We set the samples of each type of object with corre-
sponding object labels, and hope that the multimodal perception
algorithm described above can recognize the corresponding

TABLE I
SEARCH RANGES OF THE HYPERPARAMETERS

object labels of each sample. For example, sample data collected
by grasping a banana can be recognized as “banana.”

Fig. 4 displays the nine objects utilized in the dataset, along
with the representative sample data for three of these objects.
Objects are grasped standing up on the table for objects that
can stand up, such as bottles and paper cups. Slender objects
that cannot stand up, such as bananas, are placed flat on the
table. During this time, the pose of the objects was adjusted and
the grasping depth was slightly altered to obtain a wider range
of haptic information. The objects are all grasped from top to
bottom by the claw.

In the data preprocessing stage, we utilized the Z-score
normalization method to process multidimensional time series
features, ensuring comparability across different scales. For a
sample data x, this process is expressed as follows:

x∗ =
x− x

σ
. (17)

where x and σ represent the mean and standard deviation of the
raw data, respectively. Through this procedure, each time series
was mapped onto a standard normal distribution with a mean
of 0 and a standard deviation of 1, effectively eliminating scale
differences among different time series.

The dataset was systematically processed by Algorithm 1, and
an extensive hyperparameter search was conducted to enhance
performance. The search parameters and their specified ranges
are detailed in Table I, with the parametersL0 = 50,Lmax = 300
and E∗ = 10−3 held constant. After the search process, the
relevant hyperparameters are retained for use in the feature
extraction and fusion procedures. Subsequently, starting with
an initial selection of 10% data volume from the complete
dataset, the percentage was incremented by 10% in each iter-
ation until reaching 100%. At each stage, a rigorous 10-fold
cross-validation was performed.

B. Compared Methods

Our approach was subjected to comparison with sev-
eral benchmark models commonly applied in object-grasping
datasets, including MLP, LSTM, CNN, CNNLSTM, ConvL-
STM, and D-CNN. Detailed network architectures can be refer-
enced from the source papers of the object grasping datasets [35].
Notably, Maus et al. [35] had previously undertaken a hyperpa-
rameter exploration of these models using the grasping dataset.
Consequently, we limited our hyperparameter search efforts to
their dataset, adopting the same model and model parameter uti-
lized in their comparative experiments. Moreover, the outcomes
of the hyperparameter search were directly applied to both the
cutting dataset [36] and the dataset we generated internally.
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Fig. 4. (a) Nine objects used for grasping. These things are in turn: plastic bottle, paper cup, sponge, banana, corn, orange, toy duck, green
pepper, and cardboard box. (b) The left three pictures are the grasped objects in our datasets and the three pictures to the right of each grasped
object are its corresponding three-finger force haptic data. All data are Z-score normalized.

Fig. 5. Performance of various methods on different data volumes on
our dataset.

C. Performance Comparison of Multi-Modal Grasping
Target Recognition

Following a 10-fold cross-validation in the grasping dataset,
the results of the hyperparameter search are as follows: w = 26,
l = 4, a = 3, and L = 1.

The experimental results of all models on our dataset have
been encapsulated in Table II. In addition, corresponding line
charts are illustrated in Fig. 5. The outcomes from the table
distinctly demonstrate that our proposed method attains top
rankings across the four evaluation metrics, namely accuracy,
precision, recall, and F1-score, with 6, 6, 5, and 5 subsets
securing the first position, respectively. Moreover, as illustrated
in Fig. 5, even in cases where the method does not secure
the top rank in individual performance metrics, it consistently

Fig. 6. Accuracy standard deviation box plot of various algorithms
when using different data amounts on our dataset to do 10-fold cross-
validation.

maintains a highly competitive standing. And it can be found
that BOSS-MI-ELM is the outstanding performance when the
amount of data is less. These results emphasize the effectiveness
of the method on haptic perception and its excellence on small
datasets. It is noteworthy that with a reduction in data volume,
the classification performance of the D-CNN model experiences
a sharp decline. This phenomenon provides further insights into
the constraints faced by deep learning models when handling
small datasets.

In addition, we meticulously documented the standard devia-
tion of classification accuracy across tenfold cross-validation it-
erations and conducted a box plot analysis, as illustrated in Fig. 6.
The results of the box plot indicate that within the framework
of multiple cross-validation iterations, the ensemble of standard
deviations for BOSS-MI-ELM exhibits a narrower and more
compact distribution. This pattern suggests that, in comparison
to alternative algorithms, this approach demonstrates heightened
stability across each training iteration.
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TABLE II
EXPERIMENTAL RESULTS OF ALL ALGORITHMS UNDER DIFFERENT DATA

PROPORTIONS IN OUR DATASET

D. Algorithm Robustness Analysis

To assess the algorithm’s robustness, further experiments
were conducted on our dataset. A subset comprising 20% of
the data volume was extracted to create a small dataset. The
small dataset underwent both noise injection and data missing
procedures to assess the algorithm’s resilience in coping with
perturbations within constrained data environments. In the noise
experiment, Gaussian noise was applied three times with a mean
of zero and varying standard deviations. In the data missing
experiment, 40% of the time series within the small dataset
had specific-length subsequences zeroed, repeated three times
with variations in the selected lengths. The results of these
experiments are delineated in Tables III and IV. The experi-
mental results show that our method performs best with both
data anomalies, topping all performance metrics in almost every

TABLE III
10-FOLD CROSS-VALIDATION RESULTS WITH INTRODUCED GAUSSIAN NOISE

TABLE IV
10-FOLD CROSS-VALIDATION RESULTS WITH 40% DATA ANOMALIES

experiment. This demonstrates the robustness of the method in
solving data anomalies in robot grasping target recognition.

To examine the effect of noise and data loss on the extracted
and fused features, we selected a sample to show its feature
extraction results under raw, noise injection, and data loss. Three
types of recognition types in the dataset are selected to count
their distribution relationship between the first four features,
two by two after all sample features are fused. As shown in
Fig. 7. From the BOSS feature maps, it is evident that, in both
anomalous scenarios, only a small subset of features undergo
numerical changes. In the AF feature space, the overlapping
of points with different colors indicates that the correspond-
ing recognition types cannot be distinguished under these two
features. In both types of anomalies, the feature distributions
become more dispersed and these features are shifted after
noise injection. However, the clustering relationship of points
of the same color does not change significantly. It indicates
that the samples that are recognizable in the original data can
still be recognized when the data are anomalous. Even some
points of different colors transition from highly clustered state
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Fig. 7. (a), (b), and (c) shows the data and these features under normal conditions and two abnormal conditions. (d), (e), and (f) shows the
two-by-two distribution of the first four features (a1, a2, a3, a4) in AF space for all samples of the three recognition types. The parameters of the two
abnormal cases are SD=0.15 and Scale=15%, respectively. (a) The raw data and BOSS features. (b) The adding noise data and BOSS features.
(c) The missing data and BOSS features. (d) Normal conditions. (e) Noise injections. (f) Data missing.

TABLE V
FRIEDMAN TEST RESULTS ON FOUR TYPES OF PERFORMANCE

to distinguishable state due to data anomalies. This phenomenon
is likely to be the reason for the improved classification perfor-
mance under anomalies and explains the use of data anoma-
lies as a data enhancement method in many tactile perception
studies.

To further assess the statistical significance of the classi-
fication performance differences, the Friedman test [37] was
employed. Considering varied data quantities and the treatment
of datasets manipulated with noise injection and data missing as
distinct entities, it is evident that kg = 7 and ND = 16. Detailed
results of the analysis can be found in Table V.

Significant differences exist for τF greater than the critical
value. The results demonstrate notable disparities in the four
performances exhibited by each model. Therefore, to gain a
deeper understanding of the comparative performance of these
algorithms, we also conducted the Nemenyi post hoc test (shown
in Fig. 8).

In this context, the position of each algorithm’s leading
line corresponds to its ranking. A higher position in the rank-
ing indicates the superior performance of the algorithm. The
findings of the detection results unveil the outstanding perfor-
mance of the proposed methodology in this study, securing the
top position in all four performance metrics, albeit not uni-
formly surpassing other algorithms in a statistically significant
manner.

Fig. 8. Four categories of performance indicators on the CD chart.
Smaller numbers indicate higher rankings. There is no significant dif-
ference between algorithms that are traversed by horizontal lines.
(a) Accuracy. (b) Precision. (c) Recall. (d) F1.

E. Generalized Performance Verification

To verify whether the recognition performance remains good
under different grasping velocities. We collected a small dataset
of 654 samples at three additional grasping velocities. Ten-fold
cross-validations of our model were performed. The results are
shown in Fig. 9. It can be seen that our algorithm still performs
well with all four performances above 90%.

Furthermore, the analysis incorporated two publicly acces-
sible force-tactile datasets. Grasping dataset [35]: It includes
force and hand grip position information to recognize objects.
A total of 2000 samples with a time step of 50. In addition,
it incorporates an independent validation set consisting of 120
samples collected by various experimenters to reflect real-world
data scenarios. Cutting dataset [36]: It contains force, position,
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Fig. 9. Recognition performance of BOSS-MI-ELM at different grasp-
ing velocities.

TABLE VI
EXPERIMENTAL RESULTS OF ALL ALGORITHMS UNDER DIFFERENT DATA

PROPORTIONS IN GRASPING DATASET AND CUTTING DATASET

and velocity control input information for predicting the cut
state. The raw data are subdivided into 50 time steps per frame
for a total of 1780 samples.

Subsequently, we conducted experiments with incremental
data volumes on the two publicly available datasets, and the clas-
sification accuracy for both experiments is presented in Table VI.
The results indicate that in the 10 experiments on the grasping
dataset, our method consistently claimed the top position. On the
cutting dataset, while the numerical differences in classification
accuracy among various models were marginal, our algorithm
still outperformed others in seven experiments. These findings
affirm the excellent performance and robust generalization of
our method on both datasets.

However, the classification performance on the two public
datasets is significantly lower than on our dataset. For the
grasping dataset and the cutting dataset, we attribute this to
the result of having little modal data and no multifinger data,
respectively. To verify the conjecture, we add two experiments:

Fig. 10. Experimental results of BOSS-MI-ELM with different combina-
tions of modal data and different finger data. The dataset uses 20% of
our original dataset with Gaussian noise added with a standard deviation
of 0.15. In the figure on the left, P represents angle, V represents angular
velocity, and A represents acceleration. (a) Classification performance
with in different combinations of modal data. (b) Classification perfor-
mance with different finger data.

TABLE VII
ALGORITHM REAL-TIME VALIDATION

one is to use only some of the four modalities on our dataset,
and the other is to use only single-finger data for training on
our dataset. The results of the experiments are shown in Fig. 10,
which confirms that our idea is correct. It can also be found
that with the gradual addition of the three types of signals (P,
V, A) captured by the IMU, the final perceptual performance of
the system rises robustly, further illustrating the effectiveness of
combining the IMU with the force-tactile sensing that we have
implemented using the FBG.

Finally, the real-time performance of the various methods was
verified. For the 10 cross-validations on 20% of our original data,
the time taken for the test data to go from the input to the model
to the model outputting the corresponding labels was calculated,
and the average time for the last nine validations was calculated
(the time for the first validation usually includes the time to start
the computer equipment). We used the Python language and ran
it on Intel Core i7-13700KF. The results are shown in Table VII.
The real-time performance of our method is 0.6837 s, which
can be used for the process of human–computer interaction. Of
course, this time will be shorter when using GPU or switching
to C++ language.

From sliding and grasping balls of different sizes on different
surfaces to considering the effect of data volume versus grasping
speed on the perceptual ability of the model, as well as the
robustness of the model in the presence of data anomalies,
and the final validation on a public dataset, these results reveal
that our system can improve haptic-based human–computer
interaction.

V. CONCLUSION

This study establishes a robotic hand platform, marking the
first integration of FBG and IMU on a flexible robotic hand. A
method for identifying the grasping targets of a multifingered
robotic hand is proposed, which includes feature extraction
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based on the BOSS algorithm, intramodal feature fusion based
on the AF framework, and the application of a multifinger I-ELM
classifier. A dataset is constructed based on the platform, and
through extensive experiments, the reliability and robustness of
the proposed method in situations with limited samples and data
anomalies are demonstrated. In addition, the method is validated
for recognizing grasped objects under different hand speeds.
After obtaining satisfactory validation results on a public dataset,
the experiments are extended based on these results, further con-
firming the effectiveness of multimodal data and the integration
of multifinger models. Finally, the real-time performance of the
algorithm is verified. Comprehensive experiments validate the
feasibility and robustness of the proposed method in robotic
grasping target recognition, contributing to the improvement of
touch-based human–machine interaction.

In future work, our foremost objective entails the conversion
of strain data from FBG into specific contact force values
through rigorous calibration. Subsequently, we aim to incorpo-
rate additional tactile sensing modalities to enhance the richness
of tactile information during object grasping. Last, our strategic
plan encompasses the design and integration of a miniature
visual sensor, culminating in the realization of a comprehensive
vision-tactile fusion-based robotic flexible gripper for robust
object recognition during manipulation.
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